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Given f(z) = A= and 0 <r < 1.

For |z| = r, since |1 — 2|3 > (1 — |2])® = (1 — 7)3, we have

2
< =
1) < g VRl =
Furth ()| = — 2 Theref
urthermore, | f(r)| = A= erefore,
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By computing f’(z), f”(z) and f"(z), one can find that f()(z) is given by
()= A —opns Vn e N
By Cauchy’s inequality,
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First of all, in the given branch, log(—1) = log e!™ = iT.

Furthermore, by computing several derivatives, one can observe that
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So
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As a result, for 0 < |z + 1| < 1, we have



(b) Note that sinmz = —sin(w(z + 1)) = — (71'(2 +1)— w +. )

Hence
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This gives the coefficients of (z +1)71, 2% and (2 + 1)!.
(Alternatively, you may use long division to do this question.)
(¢) By (b), we have Res,,—_1 f(z) = —i.

(Alternatively, you may use any other ways to find out the residue.)
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f(2) has singular points at z = £2i, +£4i. By Cauchy’s residue theorem, we have

3. Consider f(z) = and the simple closed contour 'y = [-R, R| U C}, with R > 4.

(2)dz = 2mi (Res,—2; f(2) + Res,—4; f(2))

T'r

s _ B (2A)/(z+2i)(2* +16) ((29)?) i
At 2 =20, Res.—a f(2) = Res.—z (= — 2i) T (@) +20)((202 +16) 12

Y ‘ . . (z2)/(22+4)(z 4+ %) ((44)?) o
At 2 = 4, Res.—y; f(2) = Res:—ai (2 — 40) T (@) +4)(4ir4i) 6
Hence .

. (2)dz = 2mi <12 - 6> =5
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Also,
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/cj; (22 +4)(2%2 + 16) dz| < (R? —4)(R? —16) i = (R? —4)(R? — 16) =0

as R — 0.
As a result,
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Since the integrand is an even function, we have
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4. Given that f(z) =

P(z)
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Therefore, for large R > 0,
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. Note that f(z) is analytic except at z = 0 and roots of P(z).
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Since the function <
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> is analytic at z = 0 and
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